Max-Margin Semi-NMF
نویسندگان
چکیده
In this paper, we propose a maximum-margin framework for classification using Nonnegative Matrix Factorization. In contrast to previous approaches where the classification and matrix factorization stages are separated, we incorporate the maximum margin constraints within the NMF formulation, i.e we solve for a base matrix that maximizes the margin of the classifier in the low dimensional feature space. This results in a non-convex constrained optimization problem with respect to the bases, the projection coefficients and the separating hyperplane, which we propose to solve in an iterative way, solving at each iteration a set of convex sub-problems with respect to subsets of the unknown variables. The resulting basis matrix is used to extract features that maximize the margin of the resulting classifier. The performance of the proposed algorithm is evaluated on several publicly available datasets where it is shown to consistently outperform Discriminative NMF and SVM classifiers that use features extracted by semi-NMF.
منابع مشابه
Max-margin Non-negative Matrix Factorization
In this paper we introduce a supervised, maximum margin framework for linear and non-linear Non-negative Matrix Factorization. By contrast to existing methods in which the matrix factorization phase (i.e. the feature extraction phase) and the classification phase are separated, we incorporate the maximum margin classification constraints within the NMF formulation. This results to a non-convex ...
متن کاملEfficient Multiplicative Updates for Support Vector Machines
The dual formulation of the support vector machine (SVM) objective function is an instance of a nonnegative quadratic programming problem. We reformulate the SVM objective function as a matrix factorization problem which establishes a connection with the regularized nonnegative matrix factorization (NMF) problem. This allows us to derive a novel multiplicative algorithm for solving hard and sof...
متن کاملMax-Margin Deep Generative Models for (Semi-)Supervised Learning
Deep generative models (DGMs) are effective on learning multilayered representations of complex data and performing inference of input data by exploring the generative ability. However, it is relatively insufficient to empower the discriminative ability of DGMs on making accurate predictions. This paper presents max-margin deep generative models (mmDGMs) and a class-conditional variant (mmDCGMs...
متن کاملGroup Sparsity and Graph Regularized Semi-Nonnegative Matrix Factorization with Discriminability for Data Representation
Abstract: Semi-Nonnegative Matrix Factorization (Semi-NMF), as a variant of NMF, inherits the merit of parts-based representation of NMF and possesses the ability to process mixed sign data, which has attracted extensive attention. However, standard Semi-NMF still suffers from the following limitations. First of all, Semi-NMF fits data in a Euclidean space, which ignores the geometrical structu...
متن کاملSemi-Supervised Learning with Max-Margin Graph Cuts
This paper proposes a novel algorithm for semisupervised learning. This algorithm learns graph cuts that maximize the margin with respect to the labels induced by the harmonic function solution. We motivate the approach, compare it to existing work, and prove a bound on its generalization error. The quality of our solutions is evaluated on a synthetic problem and three UCI ML repository dataset...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011